首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118073篇
  免费   9853篇
  国内免费   6779篇
电工技术   9550篇
技术理论   2篇
综合类   8478篇
化学工业   25104篇
金属工艺   7065篇
机械仪表   8450篇
建筑科学   4574篇
矿业工程   1811篇
能源动力   5941篇
轻工业   9629篇
水利工程   1099篇
石油天然气   5035篇
武器工业   987篇
无线电   12632篇
一般工业技术   12806篇
冶金工业   2857篇
原子能技术   1520篇
自动化技术   17165篇
  2024年   196篇
  2023年   1528篇
  2022年   2174篇
  2021年   3294篇
  2020年   3080篇
  2019年   3054篇
  2018年   2906篇
  2017年   3709篇
  2016年   4005篇
  2015年   4025篇
  2014年   5886篇
  2013年   7793篇
  2012年   7101篇
  2011年   8486篇
  2010年   6754篇
  2009年   7613篇
  2008年   7262篇
  2007年   8049篇
  2006年   7736篇
  2005年   6430篇
  2004年   5603篇
  2003年   5194篇
  2002年   4185篇
  2001年   3355篇
  2000年   2763篇
  1999年   2250篇
  1998年   1598篇
  1997年   1349篇
  1996年   1245篇
  1995年   1255篇
  1994年   1059篇
  1993年   914篇
  1992年   729篇
  1991年   449篇
  1990年   311篇
  1989年   287篇
  1988年   199篇
  1987年   142篇
  1986年   134篇
  1985年   103篇
  1984年   95篇
  1983年   59篇
  1982年   61篇
  1981年   60篇
  1980年   38篇
  1979年   29篇
  1978年   24篇
  1977年   20篇
  1976年   27篇
  1975年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
《Ceramics International》2022,48(6):7533-7549
(1-x)SrFe10Al2O19/(x)Co0.6Zn0.4Fe2O4-(SFAO/CZFO) hard/soft nanocomposite ferrite materials were synthesized by ‘one-pot’ self-propagating combustion route. The co-existence of the two magnetic phases were confirmed by XRD, FESEM, EDS and VSM. The prepared nanocomposite samples were also characterized by TGA/DSC, Raman spectroscopy and VNA. Exchange coupling between the hard and the soft magnetic grains was observed by determining the switching field distribution (SFD) curve. As a result of the competing effects of exchange interaction and dipolar interaction, magnetic parameters were observed to be sensitive to the incorporation of soft magnetic phase into the nanocomposite. Results showed that with the inclusion of soft magnetic phase, exchange coupling behaviour between the hard and the soft ferrite phases had significant influence on the microwave absorption capacity of the samples. Related electromagnetic parameters and impedance matching ratio of the nanocomposite system were discussed. A minimum reflection loss of ?42.9 dB with an absorber thickness of 2.5 mm was attained by the nanocomposite (90 wt%)SrFe10Al2O19/(10 wt %)Co0.6Zn0.4Fe2O4 at a matching frequency of 11.45 GHz. This assured the candidacy of SrFe10Al2O19/Co0.6Zn0.4Fe2O4 nanocomposite as a promising microwave absorption material in the X-band (8–12 GHz).  相似文献   
32.
《Ceramics International》2022,48(7):9413-9425
Artificial bone fillers are essentially required for repairing bone defects, and developing the fillers with synergistic biocompatibility and anti-bacterial activity persists as one of the critical challenges. In this work, a new agarose/gadolinium-doped hydroxyapatite filler with three-dimensional porous structures was fabricated. For the composite filler, agarose provides three-dimensional skeleton and endows porosity, workability, and high specific surface area, hydroxyapatite (HA) offers the biocompatibility, and the rare earth element gadolinium (Gd) acts as the antibacterial agent. X-ray photoelectron spectroscopy detection showed the doping of Gd in HA lattice with the formation of Gd-HA interstitial solid solution. Attenuated total reflection Fourier transform infrared spectroscopy imaging suggested chemical interactions between agarose and Gd-HA, and the physical structure of agarose was tuned by the Gd-doped HA. Cytotoxicity testing and alizarin red staining experiments using mouse pro-osteoblasts (MC3T3-E1) revealed remarkable bioactivity and osteogenic properties of the composite fillers, and proliferation and growth rates of the cells increased in proportion to Gd content in the composites. Antibacterial testing using the gram-positive bacteria S. aureus and the gram-negative bacteria E. coli indicated promising antibacterial properties of the fillers. Meanwhile, the antibacterial properties of composite filles were enhanced with the increase of Gd content. The antibacterial fillers with porous structure and excellent physicomechanical properties show inspiring potential for bone defect repair.  相似文献   
33.
The construction of semiconductor heterojunction for photocatalytic H2 production from water splitting is an efficient and environment-friendly technology. In this work, ZnO/BiOCl (ZBC) and Sn-doped ZnO/BiOCl (ZBC-S) photocatalysts with Z-scheme heterojunction were successfully prepared by simple hydrothermal method. The photocatalytic H2 evolution from water splitting by the as-prepared photocatalysts was investigated. The formation of ZnO/BiOCl heterojunction reduces the recombination probability of the photogenerated carriers. The impurity levels originated from Sn doping reduce the band gap width of ZnO and BiOCl to some extent, thereby enhancing the light absorption ability. The ZBC-S composite exhibits the best photocatalytic activity. In addition, the photocatalytic efficiency of H2 production was improved by sensitization with Eosin Y (EY) dye. The H2 production rate under simulated sunlight reaches 4146.77 μmol g?1 h?1, which is 27 times higher than that of pure ZnO. Finally, the Z-scheme electron transfer route in ZnO/BiOCl heterojunction was determined, and the photocatalytic H2 production mechanism of EY sensitized ZBC-S was proposed.  相似文献   
34.
The durability of metal plate proton exchange membrane fuel cell (PEMFC) stack is still an important factor that hinders its large-scale commercial application. In this paper, we have conducted a 1000 h durability test on a 1 kW metal plate PEMFC stack, and explored the degradation of the core components. After 1000 h of dynamic load cycles, the voltage decay percentage of the stack under the current densities of 1000 mA cm?2 is 5.67%. By analyzing the scanning electron microscopy (SEM) images, the surfaces of the metal plates are contaminated locally by organic matter precipitated from the membrane electrode assembly (MEA). The SEM images of the catalyst coated membrane (CCM) cross section indicate that the MEA has undergone severe degradation, including the agglomeration of the catalyst layer, and the thinning and perforation of the PEM. These are the main factors that cause the rapid increase in hydrogen crossover flow rate and performance decay of the PEMFC stack.  相似文献   
35.
《Ceramics International》2022,48(7):9164-9171
The light-trapping structure is an effective method to increase solar light capture efficiency in the solar cells. In this study, Al-doped ZnO (AZO)/polystyrene (PS)/AZO tri-layer transparent conductive film with light-trapping structure was fabricated by magnetron sputtering and liquid phase methods. The structural, optical and electrical properties of the AZO films could be controlled by different growth conditions. When the sputtering pressure of the under-layer AZO film was 0.2 Pa, the discharge voltage was around 80 V, which was within the optimal process window for obtaining AZO film with high crystallinity. The optimal under-layer AZO film had a large surface roughness and a very low static water contact angle of 75.71°, promoting the relatively uniform distribution of PS spheres. Under this sputtering condition, the prepared AZO/PS/AZO tri-layer film had the highest crystallinity and least point defects. The highest carrier concentration and Hall mobility are 3.0 × 1021 cm-3and 5.39 cm2 V-1 s-1, respectively. Additionally, a transparent conductive film with the lowest resistivity value (3.88 × 10-4 Ω cm) and the highest average haze value (26.5%) was obtained by optimizing the process parameters. These properties were comparable to or exceed the reported values of surface-textured SnO2-based as well as ZnO-based TCOs films, making our films suitable for transparent electrode applications, especially in thin-film solar cells.  相似文献   
36.
《Ceramics International》2022,48(12):16923-16932
This paper offers a new way of testing the ablation property of material under an oxyacetylene torch using a thin-blade specimen, which costs much less time to reach the maximum temperature and provides a harsh turbulence fluid field that's closer to reality. The thin-blade specimen experiences a higher turbulent intensity than the traditional disk-like specimen, leading to more efficient heat exchange. The fluid field simulation agrees with the testing results. In addition, we manage to synthesize the C/Cx-SiCy composites with the co-deposition chemical vapor infiltration (CVI) method. The C/Cx-SiCy composites exhibit a similar anti-ablation property as C/C composites and consist of enough SiC phase simultaneously, combining the advantages of both C/C composites and C/SiC composites. The thin-blade C/Cx-SiCy composites show a lower linear ablation rate (1.6 μm/s) than C/C composites (4.1 μm/s) and C/SiC composites (19.6 μm/s) during the oxyacetylene test. The glass layer formed on the surface of C/Cx-SiCy could cling to the bulk material instead of peeling off due to the high PyC content in the matrix could protect the SiO2 from blowing away.  相似文献   
37.
《Ceramics International》2022,48(17):24346-24354
The borided layer was prepared on the surface of the Ti–5Mo–5V–8Cr–3Al alloy by powder-pack boriding at 1000°C-10h. SEM, EPMA and TEM were used to investigate the effects of alloying elements (Al, V, Mo and Cr) on the growth of TiB whiskers in the borided Ti–5Mo–5V–8Cr–3Al alloy. Wear properties of borided Ti–5Mo–5V–8Cr–3Al alloy were investigated using dry reciprocating friction tests. SEM results show that the thickness of boride layer in Ti–5Mo–5V–8Cr–3Al alloy is thinner than that in the Cp-Ti. This is attributed to the enrichment of alloying elements especially V in TiB/substrate by TEM, which hinders the diffusion of B atoms, thus resulting in the short and thick TiB whiskers in Ti–5Mo–5V–8Cr–3Al alloy. Borided Ti–5Mo–5V–8Cr–3Al alloy has the better wear resistance than as-received alloy.  相似文献   
38.
《Ceramics International》2022,48(8):11031-11042
Polyaniline (PANI) and its composite with sulphur doped reduced graphene oxide (S-RGO) have been successively synthesized via in-situ chemical oxidative polymerization of aniline in presence of 10 wt. % S-RGO nanosheets. Physico-chemical analyses of the synthesized nanomaterial was performed with various characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) and Thermogravimetric analysis/Differential Scanning Calorimetry (TGA/DSC). The results interpreted from the various characterizations confirm the doping of RGO with sulphur as well as strong interaction of PANI nanofibers and S-RGO nanosheets. TG/DSC curves confirm the enhanced thermal stability of polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites with heat resistance index (THRI) of 155.2 °C in comparision to pure PANI (THRI = 145.3 °C) at a filler loading of 10 wt. %. TGA validates that thermal stability of PANI/S-RGO nanocomposite improves by 6–7 °C than pure PANI in terms of weight loss percentage at a temperature of 1117 °C. However DSC analysis confirms that PANI/S-RGO retains its structural integrity and conformity to temperatures as high as 900 °C beyond which the polymer composite starts to degrade. The electromagnetic interference shielding effectiveness (EMI SE) of PANI and PANI/S-RGO nanocomposites were measured via open-ended coaxial probe set-up connected to a Vector Network Analyser (VNA) at a broadband frequency range of 1–20 GHz (1000–20000 MHz). For EMI SE measurements the various nanomaterials were incorporated into paraffin wax and made into composite pellets of thickness 5 mm by solution casting technique. The dielectric properties, electrical conductivity and EMI SE were all greatly enhanced for the PANI/S-RGO/Paraffin composite pellets. The as synthesized PANI/S-RGO/Paraffin composite pellets exhibited highest EMI SE of ?22.5 dB (>99%) as compared to ?15.89 dB of PANI/Paraffin composite pellets. The prepared composite pellets revealed an absorption dominant mechanism of shielding with highest SEA of ?14.6 dB for PANI/S-RGO/Paraffin composite pellets.  相似文献   
39.
《Ceramics International》2022,48(11):15252-15260
The Co3O4, as a potential anode of lithium-ion batteries, has gained considerable attention because of high theoretical capacity. However, the Co3O4 is suffering from serious structure deterioration and rapid capacity fading due to its bulky volume change during cyclic charge/discharge process. Herein, to stabilize the lithium storage performance of the Co3O4 nanoparticles, a characteristic carbon scaffold (HPC) integrating hollow and porous structures has been fabricated by a well-designed method for the first time. The ultrafine Co3O4 nanoparticles are cleverly anchored on the HPC (HPC@Co3O4) and hence achieve significantly improved electrochemical properties including high capacity, improved reaction kinetics and outstanding cycle stability, showing high capacity of 1084.7 mAh g-1 after 200 cycles at 200 mA g-1 as well as 681.4 mAh g-1 after 300 cycles at 1000 mA g-1. The HPC@Co3O4 therefore shows good promising for application in advanced lithium-ion battery anodes. The results of the systematically material and electrochemical characterizations indicate that the synergistic effects of ultrafine Co3O4 nanoparticles and well-designed HPC scaffolds are responsible for the outstand performance of the HPC@Co3O4 anode. Moreover, this work can enrich the understanding and development of stable and high-performance metal oxide-based lithium-ion battery anodes for advanced lithium storage.  相似文献   
40.
In this paper, a salinity gradient solar pond (SGSP) is used to harness the solar energy for hydrogen production through two cycles. The first cycle includes an absorption power cycle (APC), a proton exchange membrane (PEM) electrolyzer, and a thermoelectric generator (TEG) unit; in the second one, an organic Rankine cycle (ORC) with the zeotropic mixture is used instead of APC. The cycles are analyzed through the thermoeconomic vantage point to discover the effect of key decision variables on the cycles’ performance. Finally, NSGA-II is used to optimize both cycles. The results indicate that employing ORC with zeotropic mixture leads to a better performance in comparison to utilizing APC. For the base mode, unit cost product (UCP), exergy, and energy efficiency when APC is employed are 59.9 $/GJ, 23.73%, and 3.84%, respectively. These amounts are 47.27 $/GJ, 29.48%, and 5.86% if ORC with the zeotropic mixture is utilized. The APC and ORC generators have the highest exergy destruction rate which is equal to 6.18 and 10.91 kW. In both cycles, the highest investment cost is related to the turbine and is 0.8275 $/h and 0.976 $/h for the first and second cycles, respectively. In the optimum state the energy efficiency, exergy efficiency, UCP, and H2 production rate of the system enhances 42.44%, 27.54%,15.95%, and 38.24% when ORC with the zeotropic mixture is used. The maximum H2 production is 0.47 kg/h, and is obtained when the mass fraction of R142b, LCZ temperature, pumps pressure ratio, generator bubble point temperature are 0.603, 364.35 K, 2.12, 337.67 K, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号